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desirable to “smooth” the classified output to show only the dominant (presum-
ably correct) classification (Figure 7.48b). Initially, one might consider the ap-
plication of the previously described low-pass spatial filters for this purpose.
The problem with this approach is that the output from an image classification
is an array of pixel locations containing numbers serving the function of labels,
not quantities. That is, a pixel containing land cover 1 may be coded with a 1.
A pixel containing land cover 2 may be coded with a 2, and so on. A moving
low pass filter will not properly smooth such data because, for example, the
averaging of class 3 and class 5 to arrive at class 4 makes no sense. In short,
postclassification smoothing algorithms must operate on the basis of logical
operations, rather than simple arithmetic computations.

One means of classification smoothing involves the application of a-major-
ity filter. In such operations a moving window is passed through the classified
data set and the majority class within the window is determined. If the center
pixel in the window is not the majority class, its identity is changed to the
majority class. If there is no majority class in the window, the identity of the
center pixel is not changed. As the window progresses through the data set,
the original class codes are continually used, not the labels as modified from
the previous window positions. (Figure 7.48b was prepared in this manner,
applying a 3 X 3 pixel majority filter to the data shown in Figure 7.48a.)

Majority filters can also incorporate some form of class and/or spatial
weighting function. Data may also be smoothed more than once. Certain al-
gorithms can preserve the boundaries between land cover regions and also
involve a user-specified minimum area of any given land cover type that will
be maintained in the smoothed output.

One way of obtaining smoother classifications is to integrate the types of
logical operations described above directly into the classification process. This
involves the use of spatial pattern recognition techniques that are sensitive to
such factors as image texture and pixel context. Compared to purely spectrally
based procedures, these types of classifiers have received only limited attention
in remote sensing in the past. However, with the continued improvement in
the spatial resolution of remote sensing systems and the increasing computa-
tional power of image processing systems, such procedures will likely become
more common.

7.14 CLASSIFICATION ACCURACY ASSESSMENT

Another area that is continuing to receive increased attention by remote sen-
sing specialists is that of classification accuracy assessment. Unfortunately, to
date the ability to produce digital land cover classifications far exceeds the
ability to meaningfully quantify their accuracy. In fact, this problem sometimes
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precludes the application of automated land cover classification techniques
even when their cost compares favorably with more traditional means of data
collection. The lesson to be learned here is embodied in the expression “A clas-
sification is not complete until its accuracy is assessed.”

Classification Error Matrix

One of the most common means of expressing classification accuracy is the
preparation of a classification error matrix (sometimes called a confusion
matrix or a contingency table). Error matrices compare, on a category-by-cate-
gory basis, the relationship between known reference data (ground truth) and
'the corresponding results of an automated classification. Such matrices are
square, with the number of rows and columns equal to the number of cate-

gories whose classification accuracy is being assessed.

Table 7.3 is an error matrix that an image analyst has prepared to deter-
mine how well a classification has categorized a representative subset of pixels
used in the training process of a supervised classification. This matrix stems
from classifying the sampled training set pixels and listing the known cover

TABLE 7.3 Error Matrix Resulting from Classifying Training Set Pixels

Training Set Data (Known Cover Types)®

Row
W S F U C H Total
o W 480 0 5 0 0 0 485
E S 0 52 0 20 0 0 72
~ F 0 0 . 313 40 0 0 353
% U 0 16 0 126 0 0 142
g C 0 0 0 - 38 342 79 459
2 H 0 0 38 24 60 359 481
-—3 Column
total 480 68 356 248 402 438 1992
Producer’s Accuracy User’s Accuracy
W = 480/480 = 100% W = 480/485 = 99%
S = 052/068 = 76% S =052/072 = 72%
F = 313/356 = 88% F = 313/353 = 87%
U = 126/248 = 51% U = 126/142 = 89%
C = 342/402 = 85% C = 342/459 = 74%
H = 359/438 = 82% H = 359/481 = 75%

Overall accuracy = (480 + 52 + 313 + 126 + 342 + 359)/1992 = 84%

aW, water; S, sand; F, forest; U, urban; C, corn; H, hay.
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types used for training (columns) versus the pixels actually classified into each
land cover category by the classifier (rows).

Several characteristics about classification performance are expressed by
an error matrix. For example, one can study the various classification errors
of omission (exclusion) and commission (inclusion). Note in Table 7.3 that the
training set pixels that are classified into the proper land cover categories are
located along the major diagonal of the error matrix (running from upper left
to lower right). All nondiagonal elements of the matrix represent errors of
omission or commission. Omission errors correspond to nondiagonal column
elements (e.g., 16 pixels that should have been classified as “sand” were omitted
from that category). Commission errors are represented by nondiagonal row
elements (e.g., 38 “urban” pixels plus 79 “hay” pixels were improperly included
in the “corn” category).

Several other descriptive measures can be obtained from the error matrix.
For example, the overall accuracy is computed by dividing the total number of
correctly classified pixels (i.e., the sum of the elements along the major diago-
nal) by the total number of reference pixels. Likewise, the accuracies of indi-
vidual categories can be calculated by dividing the number of correctly classi-
fied pixels in each category by either the total number of pixels in the
corresponding row or column. What are often termed producer’s accuracies
result from dividing the number of correctly classified pixels in each category
(on the major diagonal) by the number of training set pixels used for that
category (the column total). This figure indicates how well training set pixels
of the given cover type are classified.

User’s accuracies are computed by dividing the number of correctly classi-
fied pixels in each category by the total number of pixels that were classified
in that category (the row total). This figure is a measure of commission error
and indicates the probability that a pixel classified into a given category ac-
tually represents that category on the ground [182].

Note that the error matrix in Table 7.3 indicates an overall accuracy of 84
percent. However, producer’s accuracies range from just 51 percent (“urban”)
to 100 percent (“water”) and user’s accuracies vary from 72 percent (“sand”) to-
99 percent (“water”). Furthermore, this error matrix is based on training data.
It should be remembered that such procedures only indicate how well the statistics
extracted from these areas can be used to categorize the same areas! If the results
are good, it means nothing more than the training areas are homogeneous, the
training classes are spectrally separable, and the classification strategy being em-
ployed works well in the training areas. This aids in the training set refinement
process, but it indicates little about how the classifier performs elsewhere in a
scene. One should expect training area accuracies to be overly opt:m:snc espe-
cially if they are denved from hmzted data sets. area ac
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Sampling Considerations

Test areas are areas of representative, uniform land cover that are different
from, and considerably more extensive than, training areas. They are often
located during the training stage of supervised classification by intentionally
designating more candidate training areas than are actually needed to develop
the classification statistics. A subset of these may then be withheld for the
postclassification accuracy assessment. The accuracies obtained in these areas
represent at least a first approximation to classification performance through-
out the scene. However, being homogeneous, test areas might not provide a
valid indication of classification accuracy at the individual pixel level of land
cover variability.

One way that would appear to ensure adequate accuracy assessment at the
pixel level of specificity would be to compare the land cover classification at
every pixel in an image with a reference source. While such “wall-to-wall” com-
parisons may have value in research situations, assembling reference land
cover information for an entire project area is expensive and defeats the whole
purpose of performing a remote sensing-based classification in the first place.

Random sampling of pixels circumvents the above problems, but it is pla-
gued with its own set of limitations. First, collection of reference data for a
large sample of randomly distributed points is often very difficult and costly.
For example, travel distance and access to random sites might be prohibitive.
Second, the validity of random sampling depends on the ability to precisely
register the reference data to the image data. This is often difficult to do. One
way to overcome this problem is to sample only pixels whose identity is not
influenced by potential registration errors (for example, points at least several
pixels away from field boundaries).

Another consideration is making certain that the randomly selected test
pixels or areas are geographically representative of the data set under analysis.
Simple random sampling tends to undersample small but potentially impor-
tant areas. Stratified random sampling, where each land cover category may
be considered a stratum, is frequently used in such cases. Clearly, the sampling
approach appropriate for an agricultural inventory would differ from that of a
wetlands mapping activity. Each sample design must account for the area
being studied and the cover type being classified.

One common means of accomplishing random sampling is to overlay
classified output data with a grid. Test cells within the grid are then selected
randomly and groups of pixels within the test cells are evaluated. The cover
types present are determined through ground verification (or other reference
data) and compared to the classification data.

Several papers have been written about the proper sampling scheme to be
used for accuracy assessment under various conditions, and opinions vary
among researchers {40, 60, 113]. One suggestion has been the concept of com-
bining both random and systematic sampling [42]. Such a technique may use
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systematically sampled areas to collect some accuracy assessment data early
in a project (perhaps as part of the training area selection process) and random
sampling within strata after the classification is complete.

Consideration must also be given to the sample unit employed in accuracy
assessment. Depending upon the application, the appropriate sample unit
might be individual pixels, clusters of pixels, or polygons.

Sample size must also weigh heavily in the development and interpretation
of classification accuracy figures. Again, several researchers have published
recommendations for choosing the appropriate sample size [40, 77, 162, 196].
However, these techniques primarily produce the sample size of test areas or
pixels needed to compute the overall accuracy of a classification or of a single
category. In general, they are not appropriate for filling in a classification error
matrix wherein errors of omission and commission are of interest.

As a broad guideline, it has been suggested that a minimum of 50 samples
of each vegetation or land use category be included in the error matrix. Further,
“if the area is especially large (i.e., more than a million acres) or the classifi-
cation has a large number of vegetation or land use categories (i.e., more than
12 categories), the minimum number of samples should be increased to 75 or
100 samples per category” [42]. Similarly, the number of samples for each
category might be adjusted based on the relative importance of that category
for a particular application (i.e., more samples taken in more important cate-
gories). Also, sampling might be allocated with respect to the variability within
each category (i.e., more samples taken in more variable categories such as
wetlands and fewer in less variable categories such as open water).

Evaluating Classification Error Matrices

Once accuracy data are collected (either in the form of pixels, clusters of pixels,
or polygons) and summarized in an error matrix, they are normally subject to
detailed interpretation and further statistical analysis. For example, a number
of features are readily apparent from inspection of the error matrix included
in Table 7.4 (resulting from randomly sampled test pixels). First, we can begin
to appreciate the need for considering overall, producer’s, and user’s accuracies
simultaneously. In this example, the overall accuracy of the classification is
65%. However, if the primary purpose of the classification is to map the loca-
tions of the “forest” category, we might note that the producer’s accuracy of
this class is quite good (84 percent). This would potentially lead one to the
conclusion that although the overall accuracy of the classification was poor (65
percent), it is adequate for the purpose of mapping the forest class. The prob-
lem with this conclusion is the fact that the user’s accuracy for this class is
only 60 percent. That is, even though 84 percent of the forested areas have been
correctly identified as “forest,” only 60 percent of the areas identified as “forest”
within the classification are truly of that category. A more careful inspection
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of the error matrix shows that there is significant confusion between the “for-
est” and “urban” classes. Accordingly, although the producer of the classifica-
tion can reasonably claim that 84 percent of the time an area that was forested
was identified as such, a user of this classification would find that only 60
percent of the time will an area visited on the ground that the classification
says is “forest” actually be “forest.” In fact, the only highly reliable category
associated with this classification from both a producer’s and a user’s perspec-
tive is “water.”

A further point to be made about interpreting classification accuracies is
the fact that even a completely random assignment of pixels to classes will
produce percentage correct values in the error matrix. In fact, such a random
assignment could result in a surprisingly good apparent classification result.
The & (“KHAT") statistic is a measure of the difference between the actual
agreement between reference data and an automated classifier and the chance
agreement between the reference data and a random classifier.

Conceptually, £ can be defined as

. observed accuracy — chance agreement (7.10)

1 — chance agreement

This statistic serves as an indicator of the extent to which the percentage cor-
rect values of an error matrix are due to “true” agreement versus “chance”
agreement. As true agreement (observed) approaches 1 and chance agreement
approaches 0, £ approaches 1. This is the ideal case. In reality, £ usually ranges
between 0 and 1. For example, a & value of 0.67 can be thought of as an indi-
cation that an observed classification is 67 percent better than one resulting
from chance. A & of 0 suggests that a given classification is no better than a
random assignment of pixels. In cases where chance agreement is large
enough, £ can take on negative values-—an indication of very poor classification
performance. (Because the possible range of negative values depends on the
specific matrix, the magnitude of negative values should not be interpreted as
an indication of relative classification performance).
The KHAT statistic is computed as

r r

NZ Xig — 2 (s - x44)
P e B (7.11)
N? — 2 (x4 x+i)
i=1
where
r = number of rows in the error matrix
x; = the number of observations in row i and column i (on the major

HH

diagonal)
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x;, = total of observations in row i (shown as marginal total to right of

the matrix)
x,; = total of observations in column i (shown as marginal total at

bottom of the matrix)
N = total number of observations included in matrix

To illustrate the computation of KHAT for the error matrix included in
Table 7.4

S x; = 226 + 216 + 360 + 397 + 190 + 219 = 1608

= (239 -233) + (309 - 328) + (599 - 429)

+ (521 -945) + (453 - 238) + (359 -307) = 1,124,382

. _ 2480(1608) — 1,124,382 _
K= TQasoy - 1124380

Ngh
&
T
=
+
-

|

Note that the KHAT value (0.57) obtained in the above example is some-
what lower than the overall accuracy (0.65) computed earlier. Differences in
these two measures are to be expected in that each incorporates different forms
of information from the error matrix. The overall accuracy only includes the
data along the major diagonal and excludes the errors of omission and com-
mission. On the other hand, KHAT incorporates the nondiagonal elements of
the error matrix as a product of the row and column marginal. Accordingly, it
is not possible to give definitive advice as to when each measure should be used
in any given application. Normally, it is desirable to compute and analyze both
of these values.

One of the principal advantages of computing KHAT is the ability to use
this value as a basis for determining the statistical significance of any given
matrix or the differences among matrices. For example, one might wish to
compare the error matrices resulting from different dates of images, classifi-
cation techniques, or individuals performing the classification. Such tests are
based on computing an estimate of the variance of £ and then using a Z test to
determine if an individual matrix is significantly different from a random result
and if £ values from two separate matrices are significantly different from one
another. Readers interested in performing such analyses and learning more
about accuracy assessment in general are urged to consult the various refer-
ences on this subject in the Selected Bibliography [7, 25, 40-43, 54, 160-162,
177, 182].

There are three other facets of classification accuracy assessment that we
wish to emphasize before leaving the subject. The first relates to the fact that
the quality of any accuracy estimate is only as good as the information used
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TABLE 7.4 Error Matrix Resulting from Classifying Randomly Sampled
Test Pixels

Reference Data?

Row
W S F U C H Total
g W 226 0 0 12 0 1 239
s S 0 216 0 92 1 0 309
2 F 3 0 360 228 3 5 599
% U 2 108 2 397 8 4 521
& C | 4 48 132 190 78 453
2 H 1 0 19 84 36 219 359
—3 Column
total 233 328 429 945 238 307 2480
Producer’s Accuracy User’s Accuracy
W = 226/233 = 97% W = 226/239 = 94%
S = 216/328 = 66% S =216/309 = 70%
F = 360/429 = 84% F = 360/599 = 60%
U = 397/945 = 42% U = 397/521 = 76%
C = 190/238 = 80% C =190/453 = 42%
H = 219/307 = 71% H = 219/359 = 61%

Overall accuracy = (226 + 216 + 360 + 397 + 190 + 219)/2480 = 65%

W, water; S, sand; F, forest; U, urban; C, corn; H, hay.

to establish the “true” land cover types present in the test sites. To the extent
possible, some estimate of the errors present in the reference data should be
incorporated into the accuracy assessment process. It is not uncommon to have
the accuracy of the reference data influenced by such factors as spatial mis-
registration, photo interpretation errors, data entry errors, and changes in land
cover between the date of the classified image and the date of the reference
data. The second point to be made is that the accuracy assessment procedure
must be designed to reflect the intended use of the classification. For example,
a single pixel misclassified as “wetland” in the midst of a “corn” field might be
of little significance in the development of a regional land use plan. However,
this same error might be intolerable if the classification forms the basis for
land taxation or for enforcement of wetland preservation legislation. Finally,
it should be noted that remotely sensed data are normally just a small subset
of many possible forms of data resident in a GIS. How errors accumulate
through the multiple layers of information in a GIS is the subject of ongoing
research [177].





