Classification Results Vectorize This

<u>Myth</u>

Pixels are just fine. Polygons are unnecessary!

<u>Reality</u>

Pixel Heterogeneity Confounds the User

- Excessive information and detail
- Represents data at a level that is not manageable
- Difficult to process and query
- Difficult to summarize and evaluate
- Pixel errors resolved in polygons

Traditional Approach to Polygon Formation

Filtering, Scanning and Smoothing or Making a bad situation worse !

Modal or Majority filters are useful tools for forming polygons

Reality

Mathematical Filters Do Not Approximate Ecological Relationships and Morphological Differences

Feast or famine; grass or tree
Linear feature removal and edge

degradation

Minimum mapping unit or "when do you stop filtering?"

Reality

Vegetation Characteristics are Interrelated

Cannot build separate themes and merge

 make wrong decision about type boundaries
 massive sliver problems

 Polygon attributes must be computed as weighted averages

Solution: Ecological Rule-based Pixel Aggregation

- The classified pixel is a stratum in a stratification
- Each stratum represents a distinct set of cover, size, and species descriptions that are based on ground data collection efforts
- Polygons are formed by grouping areas that have the most similar vegetation characteristics
- Continue to form polygons until all polygons meet minimum mapping unit size

Step 1: Define Rules to Guide the Aggregation Process

Vegetation classification definitions, relationships, and relative importance
Minimum mapping unit size (by characteristic)

Step 2: Evaluate Similarity and Merge With Most Similar

- Represent the rules as a function and attempt to quantify similarity
- For each subject area evaluate all adjacent areas and determine the most similar area
 - Merge the subject area into the most similar area
 - Recompute merged area attributes
- Stop when minimum mapping unit thresholds are met

Step 3: Report Polygon Attributes

- Summarize weighted averages of pixel characteristics within the polygon boundary
- Develop discrete estimates and variances from weighted averages as polygon attributes
 - variance of tree cover is related to spatial distribution of cover
 - variance of tree size is related to stand structure
- Develop single theme maps from polygon map through reclassification of database characteristics

Rule-based Aggregation Benefits

- Process millions of acres at one time
- Repeatable, Consistent, and Objective
- No human digitizing of stand boundaries
- Can modify rules to change emphasis and produce different maps.
- Can aggregate using different vegetation classification schemes to develop different maps
- Similarity of values <u>,not classes</u>, yield polygons with lower within stand variation.
- Discrete estimates allow reclassification by user defined classes